Puzzles and (equivariant) cohomology of Grassmannians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Puzzles and (equivariant) Cohomology of Grassmannians

The product of two Schubert cohomology classes on a Grassmannian Grk(C) has long been known to be a positive combination of other Schubert classes, and many manifestly positive formulae are now available for computing such a product (e.g., the Littlewood-Richardson rule or the more symmetric puzzle rule from A. Knutson, T. Tao, and C. Woodward [KTW]). Recently, W. Graham showed in [G], nonconst...

متن کامل

Equivariant Cohomology in Algebraic Geometry Lecture Seven: Equivariant Cohomology of Grassmannians

1.2. Schubert basis. To get more information, we must restrict to a torus. Take V = Cn, and let T be the subgroup of diagonal matrices in GLnC. We have the same description of H∗ TX, where X = Gr(k, n), but now Λ = ΛT = Z[t1, . . . , tn] and c(E) = ∏n i=1(1+ ti). Taking a T -invariant flag F•, we have T -invariant Schubert varieties Ωλ(F•). (In this section, we always assume a partition λ is co...

متن کامل

Equivariant Cohomology in Algebraic Geometry Lecture Eight: Equivariant Cohomology of Grassmannians Ii

σλ = |c T λi+j−i(Q− Fl+i−λi)|1≤i,j≤k. These determinants are variations of Schur polynomials, which we will call double Schur polynomials and denote sλ(x|y), where the two sets of variables are x = (x1, . . . , xk) and y = (y1, . . . , yn). (Here k ≤ n, and the length of λ is at most k.) Setting the y variables to 0, one recovers the ordinary Schur polynomials: sλ(x|0) = sλ(x). In fact, sλ(x|y)...

متن کامل

Equivariant Cohomology in Algebraic Geometry Lecture Six: Grassmannians

which can also be thought of as the number of paths from the lower-left corner to the upper-right corner of a k by n− k box, using unit steps up or right. insert Young diagram. The tangent space at pA is Hom(S,Q), where S is the vector space corresponding to pA, and Q = C /S. This has basis {ea ⊗ eb | a ∈ A, b 6∈ A} so the characters of the torus action are ta − tb, for a ∈ A and b 6∈ A. Given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2003

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-03-11922-5